Die nachfolgende Grafik zeigt die Entwicklung der durch die Libera ermittelten Diskontierungsfaktoren der letzten zwölf Monate auf der Basis eines repräsentativen Cash-Flows für die Durationen von 10, 15 und 20 Jahren.

Bestimmen Sie selbst den passenden Diskontierungsfaktor per 31. März 2025 für die gewünschte Duration!
Die Duration entspricht der cashflow-gewichteten Laufzeit aller Verpflichtungen.
Sie finden die Zahl in den Resultaten der letzten Berechnungen der Pensionsverpflichtungen.
Passender Diskontierungsfaktor (linear interpoliert):
0 | 0.0571% |
0.1 | 0.1122% |
0.2 | 0.1672% |
0.3 | 0.2222% |
0.4 | 0.2773% |
0.5 | 0.3323% |
0.6 | 0.3873% |
0.7 | 0.4424% |
0.8 | 0.4974% |
0.9 | 0.5524% |
1 | 0.6075% |
1.1 | 0.6123% |
1.2 | 0.6171% |
1.3 | 0.6219% |
1.4 | 0.6267% |
1.5 | 0.6315% |
1.6 | 0.6363% |
1.7 | 0.6411% |
1.8 | 0.6459% |
1.9 | 0.6507% |
2 | 0.6555% |
2.1 | 0.6646% |
2.2 | 0.6736% |
2.3 | 0.6827% |
2.4 | 0.6918% |
2.5 | 0.7009% |
2.6 | 0.7100% |
2.7 | 0.7190% |
2.8 | 0.7281% |
2.9 | 0.7372% |
3 | 0.7463% |
3.1 | 0.7561% |
3.2 | 0.7660% |
3.3 | 0.7758% |
3.4 | 0.7856% |
3.5 | 0.7955% |
3.6 | 0.8053% |
3.7 | 0.8152% |
3.8 | 0.8250% |
3.9 | 0.8348% |
4 | 0.8447% |
4.1 | 0.8538% |
4.2 | 0.8630% |
4.3 | 0.8721% |
4.4 | 0.8813% |
4.5 | 0.8904% |
4.6 | 0.8996% |
4.7 | 0.9087% |
4.8 | 0.9179% |
4.9 | 0.9270% |
5 | 0.9362% |
5.1 | 0.9442% |
5.2 | 0.9521% |
5.3 | 0.9601% |
5.4 | 0.9681% |
5.5 | 0.9761% |
5.6 | 0.9841% |
5.7 | 0.9920% |
5.8 | 1.0000% |
5.9 | 1.0080% |
6 | 1.0160% |
6.1 | 1.0227% |
6.2 | 1.0295% |
6.3 | 1.0363% |
6.4 | 1.0430% |
6.5 | 1.0498% |
6.6 | 1.0565% |
6.7 | 1.0633% |
6.8 | 1.0701% |
6.9 | 1.0768% |
7 | 1.0836% |
7.1 | 1.0892% |
7.2 | 1.0949% |
7.3 | 1.1005% |
7.4 | 1.1062% |
7.5 | 1.1119% |
7.6 | 1.1175% |
7.7 | 1.1232% |
7.8 | 1.1288% |
7.9 | 1.1345% |
8 | 1.1401% |
8.1 | 1.1449% |
8.2 | 1.1496% |
8.3 | 1.1543% |
8.4 | 1.1590% |
8.5 | 1.1638% |
8.6 | 1.1685% |
8.7 | 1.1732% |
8.8 | 1.1779% |
8.9 | 1.1826% |
9 | 1.1874% |
9.1 | 1.1913% |
9.2 | 1.1953% |
9.3 | 1.1992% |
9.4 | 1.2032% |
9.5 | 1.2071% |
9.6 | 1.2111% |
9.7 | 1.2150% |
9.8 | 1.2190% |
9.9 | 1.2230% |
10 | 1.2269% |
10.1 | 1.2298% |
10.2 | 1.2327% |
10.3 | 1.2355% |
10.4 | 1.2384% |
10.5 | 1.2413% |
10.6 | 1.2441% |
10.7 | 1.2470% |
10.8 | 1.2499% |
10.9 | 1.2528% |
11 | 1.2556% |
11.1 | 1.2580% |
11.2 | 1.2604% |
11.3 | 1.2627% |
11.4 | 1.2651% |
11.5 | 1.2675% |
11.6 | 1.2699% |
11.7 | 1.2722% |
11.8 | 1.2746% |
11.9 | 1.2770% |
12 | 1.2793% |
12.1 | 1.2813% |
12.2 | 1.2833% |
12.3 | 1.2852% |
12.4 | 1.2872% |
12.5 | 1.2891% |
12.6 | 1.2911% |
12.7 | 1.2931% |
12.8 | 1.2950% |
12.9 | 1.2970% |
13 | 1.2990% |
13.1 | 1.3006% |
13.2 | 1.3022% |
13.3 | 1.3039% |
13.4 | 1.3055% |
13.5 | 1.3071% |
13.6 | 1.3087% |
13.7 | 1.3104% |
13.8 | 1.3120% |
13.9 | 1.3136% |
14 | 1.3153% |
14.1 | 1.3166% |
14.2 | 1.3180% |
14.3 | 1.3194% |
14.4 | 1.3207% |
14.5 | 1.3221% |
14.6 | 1.3234% |
14.7 | 1.3248% |
14.8 | 1.3262% |
14.9 | 1.3275% |
15 | 1.3289% |
15.1 | 1.3300% |
15.2 | 1.3312% |
15.3 | 1.3323% |
15.4 | 1.3334% |
15.5 | 1.3346% |
15.6 | 1.3357% |
15.7 | 1.3369% |
15.8 | 1.3380% |
15.9 | 1.3391% |
16 | 1.3403% |
16.1 | 1.3412% |
16.2 | 1.3422% |
16.3 | 1.3431% |
16.4 | 1.3441% |
16.5 | 1.3450% |
16.6 | 1.3460% |
16.7 | 1.3469% |
16.8 | 1.3479% |
16.9 | 1.3488% |
17 | 1.3498% |
17.1 | 1.3506% |
17.2 | 1.3514% |
17.3 | 1.3522% |
17.4 | 1.3530% |
17.5 | 1.3538% |
17.6 | 1.3546% |
17.7 | 1.3554% |
17.8 | 1.3562% |
17.9 | 1.3570% |
18 | 1.3578% |
18.1 | 1.3584% |
18.2 | 1.3591% |
18.3 | 1.3598% |
18.4 | 1.3604% |
18.5 | 1.3611% |
18.6 | 1.3618% |
18.7 | 1.3624% |
18.8 | 1.3631% |
18.9 | 1.3638% |
19 | 1.3644% |
19.1 | 1.3650% |
19.2 | 1.3655% |
19.3 | 1.3661% |
19.4 | 1.3666% |
19.5 | 1.3672% |
19.6 | 1.3678% |
19.7 | 1.3683% |
19.8 | 1.3689% |
19.9 | 1.3694% |
20 | 1.3700% |
20.1 | 1.3709% |
20.2 | 1.3718% |
20.3 | 1.3727% |
20.4 | 1.3736% |
20.5 | 1.3746% |
20.6 | 1.3755% |
20.7 | 1.3764% |
20.8 | 1.3773% |
20.9 | 1.3782% |
21 | 1.3791% |
21.1 | 1.3800% |
21.2 | 1.3808% |
21.3 | 1.3816% |
21.4 | 1.3825% |
21.5 | 1.3833% |
21.6 | 1.3841% |
21.7 | 1.3850% |
21.8 | 1.3858% |
21.9 | 1.3866% |
22 | 1.3875% |
22.1 | 1.3882% |
22.2 | 1.3890% |
22.3 | 1.3897% |
22.4 | 1.3905% |
22.5 | 1.3913% |
22.6 | 1.3920% |
22.7 | 1.3928% |
22.8 | 1.3935% |
22.9 | 1.3943% |
23 | 1.3951% |
23.1 | 1.3958% |
23.2 | 1.3964% |
23.3 | 1.3971% |
23.4 | 1.3978% |
23.5 | 1.3985% |
23.6 | 1.3992% |
23.7 | 1.3999% |
23.8 | 1.4006% |
23.9 | 1.4013% |
24 | 1.4020% |
24.1 | 1.4027% |
24.2 | 1.4033% |
24.3 | 1.4039% |
24.4 | 1.4046% |
24.5 | 1.4052% |
24.6 | 1.4059% |
24.7 | 1.4065% |
24.8 | 1.4072% |
24.9 | 1.4078% |
25 | 1.4084% |
25.1 | 1.4090% |
25.2 | 1.4096% |
25.3 | 1.4102% |
25.4 | 1.4108% |
25.5 | 1.4114% |
25.6 | 1.4120% |
25.7 | 1.4126% |
25.8 | 1.4132% |
25.9 | 1.4138% |
26 | 1.4144% |
26.1 | 1.4149% |
26.2 | 1.4154% |
26.3 | 1.4160% |
26.4 | 1.4165% |
26.5 | 1.4171% |
26.6 | 1.4176% |
26.7 | 1.4182% |
26.8 | 1.4187% |
26.9 | 1.4193% |
27 | 1.4198% |
27.1 | 1.4203% |
27.2 | 1.4208% |
27.3 | 1.4214% |
27.4 | 1.4219% |
27.5 | 1.4224% |
27.6 | 1.4229% |
27.7 | 1.4234% |
27.8 | 1.4239% |
27.9 | 1.4244% |
28 | 1.4249% |
28.1 | 1.4254% |
28.2 | 1.4259% |
28.3 | 1.4263% |
28.4 | 1.4268% |
28.5 | 1.4273% |
28.6 | 1.4278% |
28.7 | 1.4282% |
28.8 | 1.4287% |
28.9 | 1.4292% |
29 | 1.4297% |
29.1 | 1.4301% |
29.2 | 1.4305% |
29.3 | 1.4310% |
29.4 | 1.4314% |
29.5 | 1.4319% |
29.6 | 1.4323% |
29.7 | 1.4328% |
29.8 | 1.4332% |
29.9 | 1.4336% |
30 | 1.4341% |
30.1 | 1.4345% |
30.2 | 1.4349% |
30.3 | 1.4353% |
30.4 | 1.4357% |
30.5 | 1.4361% |
30.6 | 1.4366% |
30.7 | 1.4370% |
30.8 | 1.4374% |
30.9 | 1.4378% |
31 | 1.4382% |
31.1 | 1.4386% |
31.2 | 1.4390% |
31.3 | 1.4394% |
31.4 | 1.4398% |
31.5 | 1.4402% |
31.6 | 1.4405% |
31.7 | 1.4409% |
31.8 | 1.4413% |
31.9 | 1.4417% |
32 | 1.4421% |
32.1 | 1.4425% |
32.2 | 1.4428% |
32.3 | 1.4432% |
32.4 | 1.4435% |
32.5 | 1.4439% |
32.6 | 1.4443% |
32.7 | 1.4446% |
32.8 | 1.4450% |
32.9 | 1.4454% |
33 | 1.4457% |
33.1 | 1.4461% |
33.2 | 1.4464% |
33.3 | 1.4468% |
33.4 | 1.4471% |
33.5 | 1.4474% |
33.6 | 1.4478% |
33.7 | 1.4481% |
33.8 | 1.4485% |
33.9 | 1.4488% |
34 | 1.4492% |
34.1 | 1.4495% |
34.2 | 1.4498% |
34.3 | 1.4501% |
34.4 | 1.4505% |
34.5 | 1.4508% |
34.6 | 1.4511% |
34.7 | 1.4514% |
34.8 | 1.4517% |
34.9 | 1.4521% |
35 | 1.4524% |
35.1 | 1.4527% |
35.2 | 1.4530% |
35.3 | 1.4533% |
35.4 | 1.4536% |
35.5 | 1.4539% |
35.6 | 1.4542% |
35.7 | 1.4545% |
35.8 | 1.4548% |
35.9 | 1.4551% |
36 | 1.4554% |
36.1 | 1.4557% |
36.2 | 1.4560% |
36.3 | 1.4563% |
36.4 | 1.4566% |
36.5 | 1.4569% |
36.6 | 1.4572% |
36.7 | 1.4575% |
36.8 | 1.4578% |
36.9 | 1.4580% |
37 | 1.4583% |
37.1 | 1.4586% |
37.2 | 1.4589% |
37.3 | 1.4592% |
37.4 | 1.4594% |
37.5 | 1.4597% |
37.6 | 1.4600% |
37.7 | 1.4603% |
37.8 | 1.4605% |
37.9 | 1.4608% |
38 | 1.4611% |
38.1 | 1.4613% |
38.2 | 1.4616% |
38.3 | 1.4619% |
38.4 | 1.4621% |
38.5 | 1.4624% |
38.6 | 1.4626% |
38.7 | 1.4629% |
38.8 | 1.4631% |
38.9 | 1.4634% |
39 | 1.4637% |
39.1 | 1.4639% |
39.2 | 1.4642% |
39.3 | 1.4644% |
39.4 | 1.4647% |
39.5 | 1.4649% |
39.6 | 1.4651% |
39.7 | 1.4654% |
39.8 | 1.4656% |
39.9 | 1.4659% |
40 | 1.4661% |
40.1 | 1.4664% |
40.2 | 1.4666% |
40.3 | 1.4668% |
40.4 | 1.4671% |
40.5 | 1.4673% |
40.6 | 1.4675% |
40.7 | 1.4678% |
40.8 | 1.4680% |
40.9 | 1.4682% |
41 | 1.4685% |
41.1 | 1.4687% |
41.2 | 1.4689% |
41.3 | 1.4691% |
41.4 | 1.4694% |
41.5 | 1.4696% |
41.6 | 1.4698% |
41.7 | 1.4700% |
41.8 | 1.4703% |
41.9 | 1.4705% |
42 | 1.4707% |
42.1 | 1.4709% |
42.2 | 1.4711% |
42.3 | 1.4714% |
42.4 | 1.4716% |
42.5 | 1.4718% |
42.6 | 1.4720% |
42.7 | 1.4722% |
42.8 | 1.4724% |
42.9 | 1.4726% |
43 | 1.4728% |
43.1 | 1.4730% |
43.2 | 1.4732% |
43.3 | 1.4735% |
43.4 | 1.4737% |
43.5 | 1.4739% |
43.6 | 1.4741% |
43.7 | 1.4743% |
43.8 | 1.4745% |
43.9 | 1.4747% |
44 | 1.4749% |
44.1 | 1.4751% |
44.2 | 1.4753% |
44.3 | 1.4755% |
44.4 | 1.4757% |
44.5 | 1.4758% |
44.6 | 1.4760% |
44.7 | 1.4762% |
44.8 | 1.4764% |
44.9 | 1.4766% |
45 | 1.4768% |
45.1 | 1.4770% |
45.2 | 1.4772% |
45.3 | 1.4774% |
45.4 | 1.4776% |
45.5 | 1.4777% |
45.6 | 1.4779% |
45.7 | 1.4781% |
45.8 | 1.4783% |
45.9 | 1.4785% |
46 | 1.4787% |
46.1 | 1.4789% |
46.2 | 1.4790% |
46.3 | 1.4792% |
46.4 | 1.4794% |
46.5 | 1.4796% |
46.6 | 1.4797% |
46.7 | 1.4799% |
46.8 | 1.4801% |
46.9 | 1.4803% |
47 | 1.4805% |
47.1 | 1.4806% |
47.2 | 1.4808% |
47.3 | 1.4810% |
47.4 | 1.4811% |
47.5 | 1.4813% |
47.6 | 1.4815% |
47.7 | 1.4816% |
47.8 | 1.4818% |
47.9 | 1.4820% |
48 | 1.4822% |
48.1 | 1.4823% |
48.2 | 1.4825% |
48.3 | 1.4827% |
48.4 | 1.4828% |
48.5 | 1.4830% |
48.6 | 1.4831% |
48.7 | 1.4833% |
48.8 | 1.4835% |
48.9 | 1.4836% |
49 | 1.4838% |
49.1 | 1.4840% |
49.2 | 1.4841% |
49.3 | 1.4843% |
49.4 | 1.4844% |
49.5 | 1.4846% |
49.6 | 1.4847% |
49.7 | 1.4849% |
49.8 | 1.4851% |
49.9 | 1.4852% |
50 | 1.4854% |
50.1 | 1.4855% |
50.2 | 1.4857% |
50.3 | 1.4858% |
50.4 | 1.4860% |
50.5 | 1.4861% |
50.6 | 1.4863% |
50.7 | 1.4864% |
50.8 | 1.4866% |
50.9 | 1.4867% |
51 | 1.4869% |
51.1 | 1.4870% |
51.2 | 1.4872% |
51.3 | 1.4873% |
51.4 | 1.4875% |
51.5 | 1.4876% |
51.6 | 1.4877% |
51.7 | 1.4879% |
51.8 | 1.4880% |
51.9 | 1.4882% |
52 | 1.4883% |
52.1 | 1.4885% |
52.2 | 1.4886% |
52.3 | 1.4887% |
52.4 | 1.4889% |
52.5 | 1.4890% |
52.6 | 1.4892% |
52.7 | 1.4893% |
52.8 | 1.4894% |
52.9 | 1.4896% |
53 | 1.4897% |
53.1 | 1.4899% |
53.2 | 1.4900% |
53.3 | 1.4901% |
53.4 | 1.4903% |
53.5 | 1.4904% |
53.6 | 1.4905% |
53.7 | 1.4907% |
53.8 | 1.4908% |
53.9 | 1.4909% |
54 | 1.4911% |
54.1 | 1.4912% |
54.2 | 1.4913% |
54.3 | 1.4915% |
54.4 | 1.4916% |
54.5 | 1.4917% |
54.6 | 1.4918% |
54.7 | 1.4920% |
54.8 | 1.4921% |
54.9 | 1.4922% |
55 | 1.4924% |
55.1 | 1.4925% |
55.2 | 1.4926% |
55.3 | 1.4927% |
55.4 | 1.4929% |
55.5 | 1.4930% |
55.6 | 1.4931% |
55.7 | 1.4932% |
55.8 | 1.4934% |
55.9 | 1.4935% |
56 | 1.4936% |
56.1 | 1.4937% |
56.2 | 1.4939% |
56.3 | 1.4940% |
56.4 | 1.4941% |
56.5 | 1.4942% |
56.6 | 1.4943% |
56.7 | 1.4945% |
56.8 | 1.4946% |
56.9 | 1.4947% |
57 | 1.4948% |
57.1 | 1.4949% |
57.2 | 1.4950% |
57.3 | 1.4952% |
57.4 | 1.4953% |
57.5 | 1.4954% |
57.6 | 1.4955% |
57.7 | 1.4956% |
57.8 | 1.4957% |
57.9 | 1.4959% |
58 | 1.4960% |
58.1 | 1.4961% |
58.2 | 1.4962% |
58.3 | 1.4963% |
58.4 | 1.4964% |
58.5 | 1.4965% |
58.6 | 1.4967% |
58.7 | 1.4968% |
58.8 | 1.4969% |
58.9 | 1.4970% |
59 | 1.4971% |
59.1 | 1.4972% |
59.2 | 1.4973% |
59.3 | 1.4974% |
59.4 | 1.4975% |
59.5 | 1.4976% |
59.6 | 1.4978% |
59.7 | 1.4979% |
59.8 | 1.4980% |
59.9 | 1.4981% |
60 | 1.4982% |
60.1 | 1.4983% |
60.2 | 1.4984% |
60.3 | 1.4985% |
60.4 | 1.4986% |
60.5 | 1.4987% |
60.6 | 1.4988% |
60.7 | 1.4989% |
60.8 | 1.4990% |
60.9 | 1.4991% |
61 | 1.4992% |
61.1 | 1.4993% |
61.2 | 1.4994% |
61.3 | 1.4995% |
61.4 | 1.4996% |
61.5 | 1.4997% |
61.6 | 1.4999% |
61.7 | 1.5000% |
61.8 | 1.5001% |
61.9 | 1.5002% |
62 | 1.5003% |
62.1 | 1.5004% |
62.2 | 1.5005% |
62.3 | 1.5006% |
62.4 | 1.5007% |
62.5 | 1.5007% |
62.6 | 1.5008% |
62.7 | 1.5009% |
62.8 | 1.5010% |
62.9 | 1.5011% |
63 | 1.5012% |
63.1 | 1.5013% |
63.2 | 1.5014% |
63.3 | 1.5015% |
63.4 | 1.5016% |
63.5 | 1.5017% |
63.6 | 1.5018% |
63.7 | 1.5019% |
63.8 | 1.5020% |
63.9 | 1.5021% |
64 | 1.5022% |
64.1 | 1.5023% |
64.2 | 1.5024% |
64.3 | 1.5025% |
64.4 | 1.5026% |
64.5 | 1.5027% |
64.6 | 1.5028% |
64.7 | 1.5028% |
64.8 | 1.5029% |
64.9 | 1.5030% |
65 | 1.5031% |
65.1 | 1.5032% |
65.2 | 1.5033% |
65.3 | 1.5034% |
65.4 | 1.5035% |
65.5 | 1.5036% |
65.6 | 1.5037% |
65.7 | 1.5037% |
65.8 | 1.5038% |
65.9 | 1.5039% |
66 | 1.5040% |
66.1 | 1.5041% |
66.2 | 1.5042% |
66.3 | 1.5043% |
66.4 | 1.5044% |
66.5 | 1.5045% |
66.6 | 1.5045% |
66.7 | 1.5046% |
66.8 | 1.5047% |
66.9 | 1.5048% |
67 | 1.5049% |
67.1 | 1.5050% |
67.2 | 1.5051% |
67.3 | 1.5051% |
67.4 | 1.5052% |
67.5 | 1.5053% |
67.6 | 1.5054% |
67.7 | 1.5055% |
67.8 | 1.5056% |
67.9 | 1.5056% |
68 | 1.5057% |
68.1 | 1.5058% |
68.2 | 1.5059% |
68.3 | 1.5060% |
68.4 | 1.5061% |
68.5 | 1.5061% |
68.6 | 1.5062% |
68.7 | 1.5063% |
68.8 | 1.5064% |
68.9 | 1.5065% |
69 | 1.5066% |
69.1 | 1.5066% |
69.2 | 1.5067% |
69.3 | 1.5068% |
69.4 | 1.5069% |
69.5 | 1.5069% |
69.6 | 1.5070% |
69.7 | 1.5071% |
69.8 | 1.5072% |
69.9 | 1.5073% |
70 | 1.5073% |
70.1 | 1.5074% |
70.2 | 1.5075% |
70.3 | 1.5076% |
70.4 | 1.5077% |
70.5 | 1.5077% |
70.6 | 1.5078% |
70.7 | 1.5079% |
70.8 | 1.5080% |
70.9 | 1.5080% |
71 | 1.5081% |
71.1 | 1.5082% |
71.2 | 1.5083% |
71.3 | 1.5083% |
71.4 | 1.5084% |
71.5 | 1.5085% |
71.6 | 1.5086% |
71.7 | 1.5086% |
71.8 | 1.5087% |
71.9 | 1.5088% |
72 | 1.5089% |
72.1 | 1.5089% |
72.2 | 1.5090% |
72.3 | 1.5091% |
72.4 | 1.5092% |
72.5 | 1.5092% |
72.6 | 1.5093% |
72.7 | 1.5094% |
72.8 | 1.5095% |
72.9 | 1.5095% |
73 | 1.5096% |
73.1 | 1.5097% |
73.2 | 1.5097% |
73.3 | 1.5098% |
73.4 | 1.5099% |
73.5 | 1.5100% |
73.6 | 1.5100% |
73.7 | 1.5101% |
73.8 | 1.5102% |
73.9 | 1.5102% |
74 | 1.5103% |
74.1 | 1.5104% |
74.2 | 1.5105% |
74.3 | 1.5105% |
74.4 | 1.5106% |
74.5 | 1.5107% |
74.6 | 1.5107% |
74.7 | 1.5108% |
74.8 | 1.5109% |
74.9 | 1.5109% |
75 | 1.5110% |
75.1 | 1.5111% |
75.2 | 1.5111% |
75.3 | 1.5112% |
75.4 | 1.5113% |
75.5 | 1.5113% |
75.6 | 1.5114% |
75.7 | 1.5115% |
75.8 | 1.5116% |
75.9 | 1.5116% |
76 | 1.5117% |
76.1 | 1.5118% |
76.2 | 1.5118% |
76.3 | 1.5119% |
76.4 | 1.5119% |
76.5 | 1.5120% |
76.6 | 1.5121% |
76.7 | 1.5121% |
76.8 | 1.5122% |
76.9 | 1.5123% |
77 | 1.5123% |
77.1 | 1.5124% |
77.2 | 1.5125% |
77.3 | 1.5125% |
77.4 | 1.5126% |
77.5 | 1.5127% |
77.6 | 1.5127% |
77.7 | 1.5128% |
77.8 | 1.5129% |
77.9 | 1.5129% |
78 | 1.5130% |
78.1 | 1.5130% |
78.2 | 1.5131% |
78.3 | 1.5132% |
78.4 | 1.5132% |
78.5 | 1.5133% |
78.6 | 1.5134% |
78.7 | 1.5134% |
78.8 | 1.5135% |
78.9 | 1.5135% |
79 | 1.5136% |
79.1 | 1.5137% |
79.2 | 1.5137% |
79.3 | 1.5138% |
79.4 | 1.5139% |
79.5 | 1.5139% |
79.6 | 1.5140% |
79.7 | 1.5140% |
79.8 | 1.5141% |
79.9 | 1.5142% |
80 | 1.5142% |
80.1 | 1.5143% |
80.2 | 1.5143% |
80.3 | 1.5144% |
80.4 | 1.5145% |
80.5 | 1.5145% |
80.6 | 1.5146% |
80.7 | 1.5146% |
80.8 | 1.5147% |
80.9 | 1.5148% |
81 | 1.5148% |
81.1 | 1.5149% |
81.2 | 1.5149% |
81.3 | 1.5150% |
81.4 | 1.5150% |
81.5 | 1.5151% |
81.6 | 1.5152% |
81.7 | 1.5152% |
81.8 | 1.5153% |
81.9 | 1.5153% |
82 | 1.5154% |
82.1 | 1.5154% |
82.2 | 1.5155% |
82.3 | 1.5156% |
82.4 | 1.5156% |
82.5 | 1.5157% |
82.6 | 1.5157% |
82.7 | 1.5158% |
82.8 | 1.5158% |
82.9 | 1.5159% |
83 | 1.5160% |
83.1 | 1.5160% |
83.2 | 1.5161% |
83.3 | 1.5161% |
83.4 | 1.5162% |
83.5 | 1.5162% |
83.6 | 1.5163% |
83.7 | 1.5163% |
83.8 | 1.5164% |
83.9 | 1.5165% |
84 | 1.5165% |
84.1 | 1.5166% |
84.2 | 1.5166% |
84.3 | 1.5167% |
84.4 | 1.5167% |
84.5 | 1.5168% |
84.6 | 1.5168% |
84.7 | 1.5169% |
84.8 | 1.5169% |
84.9 | 1.5170% |
85 | 1.5170% |
85.1 | 1.5171% |
85.2 | 1.5172% |
85.3 | 1.5172% |
85.4 | 1.5173% |
85.5 | 1.5173% |
85.6 | 1.5174% |
85.7 | 1.5174% |
85.8 | 1.5175% |
85.9 | 1.5175% |
86 | 1.5176% |
86.1 | 1.5176% |
86.2 | 1.5177% |
86.3 | 1.5177% |
86.4 | 1.5178% |
86.5 | 1.5178% |
86.6 | 1.5179% |
86.7 | 1.5179% |
86.8 | 1.5180% |
86.9 | 1.5180% |
87 | 1.5181% |
87.1 | 1.5181% |
87.2 | 1.5182% |
87.3 | 1.5182% |
87.4 | 1.5183% |
87.5 | 1.5183% |
87.6 | 1.5184% |
87.7 | 1.5184% |
87.8 | 1.5185% |
87.9 | 1.5185% |
88 | 1.5186% |
88.1 | 1.5186% |
88.2 | 1.5187% |
88.3 | 1.5187% |
88.4 | 1.5188% |
88.5 | 1.5188% |
88.6 | 1.5189% |
88.7 | 1.5189% |
88.8 | 1.5190% |
88.9 | 1.5190% |
89 | 1.5191% |
89.1 | 1.5191% |
89.2 | 1.5192% |
89.3 | 1.5192% |
89.4 | 1.5193% |
89.5 | 1.5193% |
89.6 | 1.5194% |
89.7 | 1.5194% |
89.8 | 1.5195% |
89.9 | 1.5195% |
90 | 1.5196% |
90.1 | 1.5196% |
90.2 | 1.5196% |
90.3 | 1.5196% |
90.4 | 1.5196% |
90.5 | 1.5196% |
90.6 | 1.5196% |
90.7 | 1.5196% |
90.8 | 1.5196% |
90.9 | 1.5196% |
91 | 1.5196% |
91.1 | 1.5196% |
91.2 | 1.5196% |
91.3 | 1.5196% |
91.4 | 1.5196% |
91.5 | 1.5196% |
91.6 | 1.5196% |
91.7 | 1.5196% |
91.8 | 1.5196% |
91.9 | 1.5196% |
92 | 1.5196% |
92.1 | 1.5196% |
92.2 | 1.5196% |
92.3 | 1.5196% |
92.4 | 1.5196% |
92.5 | 1.5196% |
92.6 | 1.5196% |
92.7 | 1.5196% |
92.8 | 1.5196% |
92.9 | 1.5196% |
93 | 1.5196% |
93.1 | 1.5196% |
93.2 | 1.5196% |
93.3 | 1.5196% |
93.4 | 1.5196% |
93.5 | 1.5196% |
93.6 | 1.5196% |
93.7 | 1.5196% |
93.8 | 1.5196% |
93.9 | 1.5196% |
94 | 1.5196% |
94.1 | 1.5196% |
94.2 | 1.5196% |
94.3 | 1.5196% |
94.4 | 1.5196% |
94.5 | 1.5196% |
94.6 | 1.5196% |
94.7 | 1.5196% |
94.8 | 1.5196% |
94.9 | 1.5196% |
95 | 1.5196% |
95.1 | 1.5196% |
95.2 | 1.5196% |
95.3 | 1.5196% |
95.4 | 1.5196% |
95.5 | 1.5196% |
95.6 | 1.5196% |
95.7 | 1.5196% |
95.8 | 1.5196% |
95.9 | 1.5196% |
96 | 1.5196% |
96.1 | 1.5196% |
96.2 | 1.5196% |
96.3 | 1.5196% |
96.4 | 1.5196% |
96.5 | 1.5196% |
96.6 | 1.5196% |
96.7 | 1.5196% |
96.8 | 1.5196% |
96.9 | 1.5196% |
97 | 1.5196% |
97.1 | 1.5196% |
97.2 | 1.5196% |
97.3 | 1.5196% |
97.4 | 1.5196% |
97.5 | 1.5196% |
97.6 | 1.5196% |
97.7 | 1.5196% |
97.8 | 1.5196% |
97.9 | 1.5196% |
98 | 1.5196% |
98.1 | 1.5196% |
98.2 | 1.5196% |
98.3 | 1.5196% |
98.4 | 1.5196% |
98.5 | 1.5196% |
98.6 | 1.5196% |
98.7 | 1.5196% |
98.8 | 1.5196% |
98.9 | 1.5196% |
99 | 1.5196% |
99.1 | 1.5196% |
99.2 | 1.5196% |
99.3 | 1.5196% |
99.4 | 1.5196% |
99.5 | 1.5196% |
99.6 | 1.5196% |
99.7 | 1.5196% |
99.8 | 1.5196% |
99.9 | 1.5196% |
100 | 1.5196% |